
The Geometry Stage
3D Objects, Camera, Projections, Clipping and Viewports

1

Cameras

Cameras and orthographic/perspective projections

2

Cameras

We view our 3D scene through the eyes of the camera, it
determines how we see a scene and how much we can see
at any given moment.

To navigate through a 3D scene, we need only move the
camera through the scene.

Cameras are sometimes referred to as “eyes” in graphics
literature.

Each Camera has:
 A position, a view vector and an up vector. These define the camera’s

coordinate system.

 A View Volume – only objects in this view volume are visible.

 A Projection – this defines the shape of our view volume.

3

Cameras 4

Cameras 5

Cameras 6

Cameras: View Space

Our 3D scene has its own coordinate

system called world space and all

objects are positioned relative to it.

Our camera is also positioned and

oriented in world space.

To draw our scene it is necessary to do

so from the camera’s perspective. We

need to transform the scene so that the

camera is at the center.

We create a new coordinate system

called view space which is centered on

the camera.

7

World Space

Cameras: View Space

The camera’s position is the origin

The camera’s up vector is the Y axis

The camera’s view vector is in the

direction of the:

 +Z axis (left handed system)

 -Z axis (right handed system)

This new coordinate system is stored in

a view matrix (the graphics API can

usually calculate this for you).

We transform world space into view

space by multiplying all world space

geometry with the view matrix.

8

World Space

View Space

Cameras: View Volume

Each camera has a view volume.

This view volume is defined by a near view plane and a far

view plane and its shape is determined by the type of

projection used.

Only geometry within the camera’s view volume will be

visible.

9

Example of a View Volume

a – near view plane

b – far view plane

gray area – view volume

Cameras: Projections (The CVV)

The camera’s arbitrary view volume needs to be transformed

into a unit cube centered on the view space origin. This is

done to improve the efficiency of the clipping and screen

mapping stages.

This standard cubic view volume is called the canonical view

volume (CVV) and is used in the clipping and screen

mapping stages.

The transformation of the camera’s view volume to the

canonical view volume is called a projection. Applying this

projection to view space moves us into homogenous clip

space.

10

Cameras: Projections

There are two common projections in use today:

11

Orthographic Projection Perspective Projection

Cameras: Orthographic Projection

 In an orthographic projection, the view volume is a cube, and so

the conversion from the orthographic view volume to the

canonical one is a simple matter of scaling and translation.

 This form of projection keeps all lines parallel and doesn’t scale

objects according to depth and so is ideal for CAD applications.

12

Images from “Deriving Projection Matrices” By Joe Farrel - http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__3/

Cameras: Perspective Projection

 The perspective view volume is a cutoff pyramid (a frustum) with the apex
at the camera position. It is defined by a near plane, a far plane and a
field of view angle (FOV) (can be a vertical or horizontal FOV).

 This form of projection is more realistic and takes into account that
objects further away from the camera are smaller than objects closer to
the camera. Parallel lines are no longer guaranteed to be parallel after
this projection has been applied. (why does this happen?)

13

Images from “Deriving Projection Matrices” By Joe Farrel - http://www.codeguru.com/cpp/misc/misc/math/article.php/c10123__3/

Cameras: Projections

Projections are stored in Projection Matrices, most graphics

API have helper functions to generate these matrices for you

 DirectX - D3DXMatrixPerspectiveFovRH & D3DXMatrixOrthoRH

 OpenGL - gluPerspective & gluOrtho

Projections are applied by multiplying view space

coordinates by with an appropriate projection matrix. This is

done in the vertex shader program. This converts view space

coordinates into homogenous clip space coordinates.

14

Cameras: Implementation

Camera movement must be timer based (why?) and so

camera velocities must be in “units per second”.

When doing camera rotations and using Euler angles be

careful to avoid “Gimbal Lock”.

Gimbal Lock results in a loss of a degree of freedom due to

an extreme rotation in one of the axes.

Cameras are recommended to be entirely decoupled from

rendering code and only return the view and projection

matrices (or the concatenation of both matrices).

15

The Vertex Shader Stage

Moving Spaces: From Object Space to Clip Space

16

The Vertex Shader Stage

Responsible for the transformation of vertices as well as

vertex data such as texturing coordinates, colors, etc.

The vertex shader cannot create or destroy vertices but the

vertex shader can create or discard per-vertex data.

The vertex shader outputs vertices in clip space. Can take

input vertices in any space (most commonly object space).

The vertex shader is usually responsible for transforming

object space vertices into clip space vertices (how?)

17

Transforming Vertices

In moving from object space
to clip space, the following
occurs in the vertex shader:

 Object space vertices are
multiplied by the world
matrix to move them into
world space.

 World space vertices are
multiplied by the view matrix
to move them into view
space.

 View space vertices are
finally moved into clip space
by multiplying them with the
projection matrix

18

Vertex

X
World

Matrix

Vertex

Vertex

Vertex

View

Matrix

Projection

Matrix

X

X

Object Space

World Space

View Space

Clip Space

Clipping and Screen Mapping

Primitive Clipping and Screen Mapping

19

Clipping and Screen Mapping

The final stages in the geometry stage are concerned with

preparing the geometric shapes for rasterization.

This is done in two steps:

Clipping: this process discards any geometric shapes that

aren't visible to the viewer as well as modifying any shapes

that are semi-visible

Screen Mapping: simply transforms clip space coordinates to

screen space coordinates.

20

Clipping

 Only primitives which are visible need to be passed to the rasterizer
stage.

 After projection all primitives are in homogenous clip space.

 They are checked against the 6 clipping planes of canonical view volume
(unit cube) before they are sent to the next stage.

 Any primitives that lie outside the view volume are discarded

 Any primitives that lie fully inside the view volume are passed to the next stage

 Any primitives that lie partially in the view volume are clipped.

 This stage is not user configurable and is processed by fixed function hardware

21

Screen Mapping

 After clipping has occurred, primitives are sent to the screen

mapping stage, here the unit cube’s X and Y ranges are mapped

to the pixel dimensions (width and height) of the active viewport.

 Primitives’ X and Y coordinates are transformed to be within the

viewport. This makes it easy to determine which pixels in the

viewport are affected by each primitive.

 Primitives’ depth values (Z coordinates) remain unchanged.

22

Conclusion

Overview of the Geometry Stage

23

Conclusion

Before any 3D geometry can be rendered to the screen it needs to pass
through these steps:

 Model space is converted into world space by the world transform matrix
(a concatenation of several affine transformations), this has the effect of
positioning the object in the world.

 World space is then converted to camera space by the view matrix. This
orients the world according to the camera.

 Camera space is then projected into a canonical view volume
(homogenous clip space), using the camera’s projection matrix
(orthographic/perspective)

 All projected geometry is then clipped against the canonical view volume
and only primitives within the view volume are sent for screen mapping.

 Screen mapping, Triangle Setup and Triangle Traversal converts the 3D
primitives’ coordinates into screen space pixel coordinates, adds a depth
value and sends them through to the rasterization stage.

24

