
The Application Stage
The Game Loop, Resource Management and Renderer Design

1

Application Stage Responsibilities

Set up the rendering pipeline

Resource Management

 3D meshes

 Textures

 etc.

Prepare data for rendering (primitives, textures, etc.)

 Collision detection

 Frustum Culling

Sends data down the pipeline and modifies pipeline state

 Draw Calls

 Changing shaders, textures, rasterizer states, blend states etc.

2

The Graphics API and the

Renderer

Virtual GPU Device Creation and Setup

3

The Graphics API

We use a graphics API to set up the GPU pipeline and to

send data down the pipeline.

A graphics API is low-level library that communicates with the

GPU driver and allows us easy access to GPU features.

The most common APIs are openGL and Direct3D.

4

The Graphics API

The Graphical API sends

commands to the Kernel

Mode Driver.

The driver then sends

the actual commands to

the GPU.

There is a level of

overhead introduced due

to both the driver and the

API.

5

Graphical API (User Mode)

GPU

Driver (Kernel Mode)

What are the benefits of an API?

The Renderer and the Application

MVC Design Pattern

The Renderer – The View

 Responsible for rendering the scene

 Written in a graphics API

 Handles all rendering and rendering resource management

The Application – The Model

 Determines what needs to be drawn

 Runs all object updates (physics, collision detection etc.)

User Input Handler – The controller

6

Controller

Model

View

The Game Loop

While (!exit)

 Process User Input

 Keyboard/mouse Input

 GUI Input

 Update Game

 AI

 Physics

 Collision Detection

 GUI updates

 Render Scene

 3D Scene

 GUI

7

GPU Resource Management

Vertex Buffers, Index Buffers, Textures, Shader Constants

8

Resource Types

The most common GPU resources are:

VERTEX BUFFERS

 INDEX BUFFERS

TEXTURES

9

Vertex Buffers

Large arrays containing vertex data

Stored in video memory

Requires input layout to describe memory layout of each
element in the array

10

VB Vertex Vertex Vertex Vertex Vertex Vertex

Vertex

Float3 position

Float3 normal

Float4 color

Float flag

Vertex Layout

r8g8b8 - 0

r8g8b8 – 12

r8g8b8a8 – 24

r32 - 40

Vertex Buffers

Static Buffers

 Initialized with vertex data when created

 Cannot be changed via CPU

 Useful for static meshes

Dynamic Buffers

 Empty memory when created

 Can be accessed and modified by CPU

 CPU access performed via Mapping

 Useful for changing vertex data, i.e. particle systems, text

11

Index Buffers

Contains a list of vertex buffer indices

Stored in video memory

12

Vertex

Buffer

0 1 2 3 4

Index

Buffer 0 1 2 4 1 3 2 1 3 4

Why is this useful?

Vertex Vertex Vertex Vertex Vertex

Textures

Large arrays of data values stored in video memory

 1D,2D,3D

Textures don’t necessarily contain image data

 Height Maps, Normal Maps, Depth textures

13

Normal Map Height Map Depth Texture

Resource Management

Limited Video Memory

Remember to “RELEASE” resources when finished with

them – do not just delete the pointer!

Low-level GPU resource management is the job of the

renderer

Simulation/Game will determine what resources need to be

loaded or freed.

14

3D Rendering Basics

A trip down the pipeline

15

Rendering Basics – 3D Meshes
 All 3D objects are comprised of a set of

connected convex polygons (faces).
Each face is defined by a set of points
(vertices).

 A model is often defined as a list of
vertices, with additional information on
how to connect the vertices to create
the required faces.

 Each vertex is positioned relative to the
models own co-ordinate system
(space), the objects co-ordinate system
is known as model space

 If needed texture mapping and lighting
information is defined at each vertex.

16

Model and art courtesy of quigmire.com

Rendering Basics - Texturing
 To add more detail to a model we

“skin” or wrap the model using a 2D
image which defines how the surface
of the object should appear.

 Each face is mapped to portion of the
2D image by a technique called texture
mapping or UV mapping.

 UV mapping refers to the co-ordinate
system used by the texture. The
texture is 2D and u represents the
horizontal axis and v represents the
vertical axis.

 Mapping is the process of representing
one coordinate system in terms of
another.

17

Model and art courtesy of quigmire.com

Rendering Basics - Lighting
 The previous mesh had very little

detail in it, and so the artist has
improved it by increasing the polygon
(face) count. This is called a high
polygon model. High polygon models
are smoother in appearance and allow
for more detailed lighting.

 Additional Lighting parameters are
now added to the model so that it can
be correctly shaded.

 In the model we can see the illusion of
details like button holes and stitching,
these illusions are achieved by
advanced lighting techniques such as
normal mapping.

18

Model and art courtesy of quigmire.com

Rendering Basics – Final Result
 The image shown here is the result of

the combination of the three basic
techniques we just described.

 All the information needed to render
the model was defined in the
application stage, the vertex positions
relative to the model’s coordinate
system, all the necessary resources
such as textures and bump maps, all
necessary lighting info such as
materials and normal vectors are set
up prior to sending anything to the
GPU.

 Once all the data and resources have
been allocated for the model then we
send all the data down the pipeline
using “draw calls”.

19

Model and art courtesy of quigmire.com

A trip down the Pipeline

Okay so how do we send a 3D object down the pipeline?

20

Input

Assembler

Stage

Vertex

Shader
Rasterizer

Stage

Output

Merger

Stage

Pixel

Shader

• Vertex Buffer

• Input Layout

• Primitive Topology

• Index Buffer

First step is to set up the input assembler stage:

 Bind the vertex buffer containing the object to the IA stage

 Set the input layout of the vertex buffer

 Set the primitive topology of the object’s vertex buffer

 Bind any index buffers used to draw the object

A trip down the Pipeline

Now we need to set the vertex and pixel shader programs.

21

Input

Assembler

Stage

Vertex

Shader
Rasterizer

Stage

Output

Merger

Stage

Pixel

Shader

• Vertex Buffer

• Input Layout

• Primitive Topology

• Index Buffer

Then we need to set up all vertex shader data

 matrices, constants, textures, samplers, etc…

Then we need to set up all pixel shader data

 matrices, constants, textures, samplers, etc…

VS1 PS1

• Matrices

• Textures

• Samplers

• etc…

• Matrices

• Textures

• Samplers

• etc…

A trip down the Pipeline

The final step is to configure the Rasterizer and Merger stages.

22

Input

Assembler

Stage

Vertex

Shader
Rasterizer

Stage

Output

Merger

Stage

Pixel

Shader

• Vertex Buffer

• Input Layout

• Primitive Topology

• Index Buffer

VS1 PS1

• Matrices

• Textures

• Samplers

• etc…

• Matrices

• Textures

• Samplers

• etc… RS Params OM Params

Now we can call the DRAW function to send all the data down

the pipeline.

DRAW

Direct3D 10 Effect System

The Direct3D 10 Effects contains the entire pipeline state

apart from the IA stage.

All stage data (matrices, textures, etc.) need to be set via the

effect interface.

When you apply a technique you set the pipeline state

(including all stage data).

23

EFFECT FILE

VS Program

GS Program

PS Program

Rasterizer State

Output Merger State

Texture Samplers

ETC.

TECHNIQUE1

VS Program

GS Program

PS Program

Rasterizer State

Output Merger State

Texture Samplers

ETC.

TECHNIQUE2

VS Program

GS Program

PS Program

Rasterizer State

Output Merger State

Texture Samplers

ETC.

TECHNIQUE3

