
The Graphical Pipeline
The Graphical Pipeline and the Graphics Processing Unit

1

The Graphical Pipeline

Computer Graphics Basics

2

The Graphical Pipeline

The theoretical graphical pipeline consists of three stages:

The Application Stage:

 This stage is the code stage, code is written in a high level language

(C++, C#) using a graphics API and executes on the CPU.

 It controls and configures future stages in the pipeline e.g. blending,

clipping, testing, etc.

 It is responsible for creating, initializing and updating all scene

elements e.g. lights, camera, geometry, textures, etc.

 This stage sends geometric data (vertex lists) down the pipeline using

draw calls.

3

Application Geometry Rasterizer

The Graphical Pipeline

The theoretical graphical pipeline consists of three stages:

The Geometry Stage:

 This stage modifies the geometric data (vertices) sent down the

pipeline by applying geometric transformations, vertex lighting, etc.

 The vertex and geometry shaders play a large role in the geometry

stage. They are written in a High Level Shading Language (HLSL,

GLSL, Cg) and are executed by the GPU’s stream processors.

 This stage is also responsible for view projection, clipping and screen

mapping.

4

Application Geometry Rasterizer

The Graphical Pipeline

The theoretical graphical pipeline consists of three stages:

The Rasterizer Stage:

 This stage is responsible for producing the displayed image. It does

this by converting the 3D geometric data into a 2D color image.

 The pixel shader calculates color values for pixels. It is written in a

High Level Shading Language (HLSL, GLSL, Cg) and is executed by

the GPU’s stream processors. It is responsible for all texturing and per

pixel lighting operations.

 This stage also performs fragment (similar to a pixel) testing and pixel

blending.

5

Application Geometry Rasterizer

The Modern Graphical Pipeline

The Modern GPU pipeline and the DirectX10 pipeline

6

The Modern Graphical Pipeline

Above is the rendering pipeline found on most modern

GPUs.

Green stages are fully programmable using shader

languages such as HLSL/Cg/GLSL

Yellow stages are configurable through the graphical API but

not programmable

Blue stages are completely fixed in their function

7

MGP: Vertex Shader

Processes every vertex sent down the pipeline

independently. Incoming streams of vertices can be

processed in parallel on the GPU’s multiple shader

processors.

Cannot create or destroy vertices. It can only modify or add

vertex data.

The vertex shader stage is commonly used to apply

transformations and deformations to geometry.

8

MGP: Geometry Shader

Only present in SM 4.0+

Takes a single primitive (point, line, triangle) and its defining

vertices as input (may also take in adjacency info).

 It can generate additional vertices per primitive and so

modify the primitive or generate new primitives from it.

9

MGP: Clipping & Screen Mapping

After the vertices have been processed by the VS/GS

stages, they are tested against the canonical view volume

(clipping) and vertices that pass are sent down the pipeline

for rasterization.

The screen mapping stage is the first stage in the

rasterization pipeline, it maps the horizontal/vertical

dimensions of the canonical view volume to the dimensions

of the currently active viewport.

10

MGP: Triangle Setup & Traversal

This stage take vertices as input and constructs triangles

from them. Triangles are constructed from vertex streams

using a primitive topology (triangle list, triangle strip).

Triangle traversal moves over a triangle’s surface

determining which pixels in the frame buffer will be affected

by it. For each affected pixel, a fragment is created

containing the affected pixel’s position, a depth value and

any additional data (from the triangles vertex data) the pixel

shader requires. Vertex data interpolation occurs here.

11

MGP: Pixel Shader

Receives fragments as input. Fragment data contains all

necessary information needed for lighting and texturing

calculations.

The pixel shader calculates the final fragment color, this color

is used in the final merging stage.

The depth value generated in earlier stages (triangle

traversal) can also be modified by the pixel shader.

12

MGP: Merger Stage

This is the final stage, pixel testing and blending occurs here.

Fragments are tested against certain parameters (e.g. depth

testing) and if they pass they are sent to the blending stage.

Fragments refer to specific pixels, and if they pass the testing

stage. Their color values are blended with the existing pixel

color (in the frame buffer). This blending is user configurable.

While this stage is not programmable, it is highly configurable

in regards to how testing and blending occurs.

13

14 The DirectX10 Pipeline

 Input-Assembler (IA):
Reads input data from user
created buffers, assembles
and optimizes vertex buffers
to be used by other stages.

Vertex Shader (VS):
Does all vertex operations
and calculations on each
vertex sent to it by the IA
stage

Geometry Shader (GS):
The GS is used to generate
new geometry

Geometry Stage

Rasterizer Stage

15 The DirectX10 Pipeline

Rasterizer (RS):

converts vector information

into a raster image

(primitives → fragments).

Pixel Shader (PS):

per-pixel operations like

lighting and post processing.

Output Merger (OM):

Generates the final rendered

pixels from a combination of

testing and blending.

Geometry Stage

Rasterizer Stage

The Graphics Processing Unit

Programmable Shaders & GPU Architecture

16

Programmable Shaders: History

 Pre-2001 there was no hardware support for programmable

shaders, software attempts (pixar’s renderman) made use of multi-

pass rendering to simulate shaders. ID software’s Quake III

scripting language was one of the first commercial successes of

such a software shading system.

 In 2001, the geforce3 was released supporting Shader Model (SM)

1.1. This allowed for basic programmability using an assembly-like

language and was very limited (only allowed 12 instructions per

program and had no flow control)

 In 2002 SM2.0 (geforce4, ATI 9 series) was released allowing for

fully programmable shaders. Microsoft and NVIDIA released

HLSL/Cg. SM2.0 added flow control and so allowed for complex

shader programs. These languages were based on the c syntax

and featured elements from pixar’s renderman shading language.

17

Programmable Shaders: History

 In 2004, SM3.0 was released (geforceFX, ATI X series), SM3.0 was an

incremental improvement, turning optional features into requirements and

adding limited support for texture reads in vertex shaders. Current gen

consoles all have SM3.0 capable hardware (Xbox 360/PS3).

 In 2007, DirectX10 was released with SM4.0, this release offered a

uniform programming model for all shaders (unified shader model),

resource limits were increased. Integer data types and bitwise operators

were included. HLSL moved closer to becoming a fully fledged

programming language. Most 3D applications had moved to a heavy

reliance on programmable shaders.

 In 2009, DirectX11 is released featuring SM5.0. SM5.0 adds another

shader stage: the compute shader and offers dynamic linking in HLSL.

Most important DX11 is a superset of DX10 and can be run with a

reduced feature set on DX10 (and DX9) hardware by querying the device

capabilities.

18

GPU Architecture

The GPU is simply a hardware implementation of the

graphical pipeline.

As the pipeline has evolved so has the GPU. Early GPUs

were nothing more than a collection of raster operators

(ROPS) and geometry engines with very limited capabilities

With the introduction of programmable shaders, GPUs

evolved to contain specialized vertex and pixel shader

processors

19

GPU Architecture - NVIDIA 7800 20

GPU Architecture

From shader model 4.0, GPUs have moved to a unified

shader model. This means that the various shader programs

(vertex/pixel) are all programmed in a similar fashion

GPUs could replace their specialized shader processors with

generalized stream processors.

21

GPU Architecture – NVIDIA G80 22

GPU Architecture: Unified Shaders 23

Slides from GPU Architecture: Implications & Trends - David Luebke, NVIDIA Research – SIGGRAPH 2008

GPU Architecture: Unified Shaders 24

Slides from GPU Architecture: Implications & Trends - David Luebke, NVIDIA Research – SIGGRAPH 2008

GPU Architecture: Unified Shaders 25

Slides from GPU Architecture: Implications & Trends - David Luebke, NVIDIA Research – SIGGRAPH 2008

The Modern GPU – The GTX 580 26

16 Stream

multiprocessors (SMs),

each containing 32

stream processors.

512 stream processors

total.

Processing power:

GTX580: 1581 GFLOPs

i7 2600k: 120 GFLOPs

Conclusion

The graphical pipeline describes the process that geometry

goes through before being finally rasterized to the display.

 The graphical API is a software implementation of the

modern graphical pipeline which controls and configures the

hardware implementation (the GPU).

GPU architecture has changed significantly over the last

decade. The GPU has moved from consisting of specialized

hardware for specific tasks like vertex processing to a more

unified approach containing general purpose stream

processors.

The move to a unified architecture has simplified the

programming of shader programs greatly.

27

