
3D Mathematics
Co-ordinate systems, 3D primitives and affine transformations

1

Coordinate Systems 2

Primitives

Primitive Types and Topologies

3

Primitive Types and Topologies

A primitive is the most basic

type of 3D object.

Each primitive is defined by a

set of vertices.

The type of primitive is

determined by the method of

connection used to connect the

vertices.

This method of connection is

referred to as the primitive

topology.

4

Primitive Topologies: Point List

A point is created for each vertex in the vertex set.

5

Primitive Topologies: Line List

A line is created for each vertex pair in the vertex set.

NOTE: the order of vertices in the vertex set matters!

6

Primitive Topologies: Line Strip

A line is created between each vertex and the subsequent

vertex in the vertex set.

Creates one continuous line.

7

Primitive Topologies: Triangle List

A triangle is create for each vertex triplet in the vertex set.

8

Primitive Topologies: Triangle Strip

 A triangle is created for the first triplet in the vertex set.

 For each subsequent vertex in the vertex set, a triangle is created

using that vertex and the previous two vertices in the vertex set.

9

Primitive Topologies: Triangle Fan

A number of triangles are created around the first vertex in a

vertex set.

Not commonly used.

10

Triangle Winding

The order in which the vertices of a triangle are specified
control the winding direction.

This is important as it defines the direction of the normal to
the triangle. The use of this normal is discussed in a later
section.

11

Triangle Based Rendering

All the vertices in a triangle are co-

planar meaning that a triangle is a

planar shape.

This means that the triangle is the

simplest primitive that creates a

plane.

We can approximate any other

polygon by the use of triangles.

12

WHY?

3D Objects

Constructing and Positioning 3D Objects

13

Constructing 3D Objects
All complex 3D objects are made

up of a collection of triangle

primitives.

This collection of primitives is

referred to as a triangle mesh.

Each primitive is made up of three

vertices. Meaning that a 3D mesh

is simply a large vertex set.

14

3D Objects: Model Space
To correctly position all the

vertices we first need a frame of

reference.

Each model has its own

coordinate system called a

SPACE.

All vertices defined in the model

are defined according to that

space and so that space is known

as MODEL SPACE.

15

3D Objects: World Space

Our scene also has its own coordinate system known as

WORLD SPACE and every object has a position in the

scene relative to that coordinate system.

16

WORLD

SPACE

MODEL

SPACE

3D Objects: World Space 17

WORLD

SPACE

MODEL

SPACE

 How do we position our model in the scene?

 What if the model was rotated?

Positioning 3D Objects

To deal with rotation and positioning of objects, we need to

think of in terms of positioning an objects coordinate system

and not positioning the object.

Since the object is defined around its coordinate system, if

we transform the coordinate system then every point defined

around that system will automatically be adjusted.

18

Affine Transformations

Translation, Rotation and Scaling

19

Linear Transforms

 A linear transform is one that preserves vector addition and scalar
multiplication:

 Scaling and rotation are linear transforms but translation is not
since:

 Linear transforms can be represented by a 3x3 matrix, but
translation cannot so we have to make use of homogenous
coordinates and 4x4 matrices.

20

f(kx) =kf(x)

y)+f(x =f(y) +f(x)

 ty t x t(y) t(x)

 ty x y)t(x

 t+ x=t(x)





Homogenous Coordinates

 Homogenous coordinates for an Rn space are defined in an Rn+1
space. So for 3 dimensions we use 4 dimensional coordinates:
(x,y,z,w).

 Homogenous means “same type” and in this case it refers to the
fact that we can define both points and vectors using the same
notation.

 The w element denotes a point if set to 1 or a vector if set to 0.

Point : w=1 : (x,y,z,1)

Direction Vector : w=0 : (x,y,z,0)

 As we are now working in 4D we need a 4x4 matrix to represent
our transforms.

21

Affine Transformations

To deal with the non-linearity of the translation transform we

make use of affine transformations.

An affine transformation is one that performs a linear

transform followed by a translation. It also preserves

parallelism of lines and the colinearity (all points will still lie on

the same line after the transform) of points.

22

Affine Transformations

Affine transforms are represented by 4x4 matrices using

homogenous coordinates.

An affine transform may also be any sequence of

concatenations of individual affine transforms.

To apply an affine transformation you will multiply all points

that need to be transformed by the transformation matrix.

A rigid body transform is one that preserves distances

between points transformed and handedness (i.e. never

swaps left and right)

23

Translation

 Translation is the change of location and is represented by the
translation matrix T which translates an entity by the vector t
where t is (tx, ty, tz).

 Translation is a rigid body transform

24

ptTnTranslatio

t

t

t

tT
z

y

x

)(

1000

100

010

001

)(























Change on X axis

Change on Y axis

Change on Z axis

Scaling
 Scaling is used to enlarge or shrink an object using the scaling

factors sx, sy, sz, which affect the scaling of the object in those
three axes.

25

psSScaling

s

s

s

sS
z

x

y

)(

1000

000

000

000

)(























Scale on X axis

Scale on Y axis

Scale on Z axis

Shear

Shearing or Skewing is used to tilt/skew geometry, there are

six basic shearing matrices: Hxy(s), Hxz(s), Hyx(s), Hyz(s),

Hzx(s), Hzy(s)

26

psHShearing

s

sH

xz

xz

)(

1000

0100

0010

001

)(























Second subscript defines column

first subscript defines row

H-1
xz (s) = Hxz(-s)

Rotation
The rotation transform rotates a vector by a given angle

around a given axis passing through the origin.

27






















1000

0cossin0

0sincos0

0001

)(



xR






















1000

0cos0sin

0010

0sin0cos

)(




yR

pRRotation zyx)(// 

















 



1000

0100

00cossin

00sincos

)(




zR NOTE: Angles are in Radians!!

Direction of Rotation
The direction of rotation can be calculated using a left hand

or right hand rule depending on the handedness of the

coordinate system in use (left/right).

28

Concatenations of Transforms

 Since matrix multiplication is non-commutative, the order of

concatenation of affine transformation matrices is very important.

29

Rotation then Scaling

Scaling then Rotation

Concatenations of Transforms
Since matrix multiplication is non-commutative, the order of

concatenation of affine transformation matrices is very

important.

For example, if we want to scale then rotate then translate

the complete transform will be:

C = T R S
 With the order being right to left, so for each point p in an object:

C = (T (R (Sp)))
 It is important to note that matrix multiplication is associative:

C = TRSp = (TR)(Sp)

30

D3DX10’s Transforms

You will notice that the matrix is multiplied with the point to be

transformed, and not the point multiplied by the

transformation matrix (which would be the intuitive approach)

Transform of point p by matrix T = Tp

Since this is not intuitive, the D3DX math library defines the

transformation matrices as transposes due to the property

that: Tp = pTTT

31

 

























































1

0100

0010

0001

1

11000

100

010

001

zyx

zyx

z

y

x

z

y

x

ttt

ppp
p

p

p

t

t

t

The Normal Transform

A single affine transformation matrix can be used to

transform lines, points, polygons and other geometry but

cannot always be used to transform the surface normal.

Translations and rotations do not affect the normal but

scaling & shearing does!

Uniform scaling simple affects the normal’s length so the

surface normal needs to be normalized (made into a unit

vector again)

Non-uniform scaling changes the direction of the normal and

so it needs to be recalculated.

32

Practical Examples of Affine

Transformations

Rotation around a point, rotation around an arbitrary axis,

Transform concatenation examples.

33

Rotation about a Fixed Point

 The achieve rotation around a specific point, first translate the object so

that point is now at the origin, then perform the required rotation and

translate the object back to its original position.

34

The complete transform X is : X = T(p)Ry(θ)T(-p)

Rotation about an Arbitrary Axis

 Make Sure that r is a unit vector

 Find two more unit length axes (s,t) to
form an orthonormal system

 To find s, set the smallest value to zero
and swap the remaining elements and
negate the first one, then normalize s.

 To find t: r cross product s

 Create matrix M, this matrix transforms
vector r to the x axis, s to the y axis
and t to the z axis.

 Rotate around x (technically r) and
then reverse coordinate system
transform

35

MRMX

t

s

r

M

srt

x

T)(

s / s s

) rz ,ry ,rx min(rz if) 0 rx, (-ry, s

) rz ,ry ,rx min(ry if)rx 0, (-rz, s

) rz,ry ,rx min(rx if)ry rz,- (0, s































Transform Examples

We have an object centered around the point (1,0,0) in object

space. This object is positioned at (4,3,-1) in world space.

After we position the object, we want to rotate the object 45

degrees to the left around the Y axis. What does the final

transform look like?

36

FT = T(5,3,-1) Ry(-π/2) T(-5,-3,1)

Space Example

 We have a planet P at position p orbiting

(rotating around its own center as well) a sun

S centered at the origin (s) at a distance of 10

units. The speed of rotation is 0.1 Radians per

frame.

 Planet P has a moon M at position m orbiting

planet P at a distance of 2 units. The moon

orbits the planet at a speed of 0.01 Radians

per frame.

 What are the transforms necessary to perform

the necessary adjustments at each frame?

37

