
3D Mathematics 
Co-ordinate systems, 3D primitives and affine transformations 
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Coordinate Systems 2 



Primitives 

Primitive Types and Topologies 
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Primitive Types and Topologies 

A primitive is the most basic 

type of  3D object. 

Each primitive is defined by a 

set of vertices. 

The type of primitive is 

determined by the method of 

connection used to connect the 

vertices. 

This method of  connection is 

referred to as the primitive 

topology. 

 

 

4 



Primitive Topologies: Point List 

A point is created for each vertex in the vertex set. 
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Primitive Topologies: Line List 

A line is created for each vertex pair in the vertex set. 

NOTE: the order of vertices in the vertex set matters! 
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Primitive Topologies: Line Strip 

A line is created between each vertex and the subsequent 

vertex in the vertex set. 

Creates one continuous line. 
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Primitive Topologies: Triangle List 

A triangle is create for each vertex triplet in the vertex set. 
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Primitive Topologies: Triangle Strip 

 A triangle is created for the first triplet in the vertex set.  

 For each subsequent vertex in the vertex set, a triangle is created 

using that vertex and the previous two vertices in the vertex set. 
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Primitive Topologies: Triangle Fan 

A number of triangles are created around the first vertex in a 

vertex set. 

Not commonly used.  
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Triangle Winding 

The order in which the vertices of a triangle are specified 
control the winding direction. 

This is important as it defines the direction of the normal to 
the triangle. The use of this normal is discussed in a later 
section. 
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Triangle Based Rendering 

All the vertices in a triangle are co-

planar meaning that a triangle is a 

planar shape. 

This means that the triangle is the 

simplest primitive that creates a 

plane. 

We can approximate any other 

polygon by the use of triangles. 
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3D Objects 

Constructing and Positioning 3D Objects 
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Constructing 3D Objects 
All complex 3D objects are made 

up of a collection of triangle 

primitives. 

This collection of primitives is 

referred to as a triangle mesh. 

Each primitive is made up of three 

vertices. Meaning that a 3D mesh 

is simply a large vertex set. 
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3D Objects: Model Space 
To correctly position all the 

vertices we first need a frame of 

reference. 

 

Each model has its own 

coordinate system called a 

SPACE. 

 

All vertices defined in the model 

are defined according to that 

space and so that space is known 

as MODEL SPACE. 
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3D Objects: World Space 

Our scene also has its own coordinate system known as 

WORLD SPACE and every object has a position in the 

scene relative to that coordinate system. 
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3D Objects: World Space 17 

WORLD  

SPACE 

MODEL 

SPACE 

 How do we position our model in the scene?  

 

 

 What if the model was rotated?  

 

 



Positioning 3D Objects 

To deal with rotation and positioning of objects, we need to 

think of in terms of positioning an objects coordinate system 

and not positioning the object.  

 

Since the object is defined around its coordinate system, if 

we transform the coordinate system then every point defined 

around that system will automatically be adjusted. 
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Affine Transformations 

Translation, Rotation and Scaling 
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Linear Transforms 

 A linear transform is one that preserves vector addition and scalar 
multiplication: 

 

 

 

 Scaling and rotation are linear transforms but translation is not 
since:  

 

 

 

 

 Linear transforms can be represented by a 3x3 matrix, but 
translation cannot so we have to make use of homogenous 
coordinates and 4x4 matrices. 
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Homogenous Coordinates 

 Homogenous coordinates for an Rn space are defined in an Rn+1 
space. So for 3 dimensions we use 4 dimensional coordinates: 
(x,y,z,w).  

 

 Homogenous means “same type” and in this case it refers to the 
fact that we can define both points and vectors using the same 
notation. 

 

 The w element denotes a point if set to 1 or a vector if set to 0. 
 

Point : w=1 : (x,y,z,1) 

Direction Vector : w=0 : (x,y,z,0) 

 

 As we are now working in 4D we need a 4x4 matrix to represent 
our transforms.  
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Affine Transformations 

To deal with the non-linearity of the translation transform we 

make use of affine transformations.  

 

An affine transformation is one that performs a linear 

transform followed by a translation. It also preserves 

parallelism of lines and the colinearity (all points will still lie on 

the same line after the transform) of points. 
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Affine Transformations 

Affine transforms are represented by 4x4 matrices using 

homogenous coordinates. 

 

An affine transform may also be any sequence of 

concatenations of individual affine transforms. 

 

To apply an affine transformation you will multiply all points 

that need to be transformed by the transformation matrix. 

 

A rigid body transform is one that preserves distances 

between points transformed and handedness (i.e. never 

swaps left and right) 

 

 

 

 

 

23 



Translation 

 Translation is the change of location and is represented by the 
translation matrix T which translates an entity by the vector t 
where t is (tx, ty, tz). 
 

 

 

 

 

 

 

 

 

 

 Translation is a rigid body transform 
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Scaling 
 Scaling is used to enlarge or shrink an object using the scaling 

factors sx, sy, sz, which affect the scaling of the object in those 
three axes. 
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Shear 

Shearing or Skewing is used to tilt/skew geometry, there are 

six basic shearing matrices: Hxy(s), Hxz(s), Hyx(s), Hyz(s), 

Hzx(s), Hzy(s)  
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Rotation 
The rotation transform rotates a vector by a given angle 

around a given axis passing through the origin.  
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Direction of Rotation 
The direction of rotation can be calculated using a left hand 

or right hand rule depending on the handedness of the 

coordinate system in use (left/right). 
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Concatenations of Transforms 

 Since matrix multiplication is non-commutative, the order of 

concatenation of affine transformation matrices is very important. 
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Concatenations of Transforms 
Since matrix multiplication is non-commutative, the order of 

concatenation of affine transformation matrices is very 

important. 

 

For example, if we want to scale then rotate then translate 

the complete transform will be: 

C = T R S  
 With the order being right to left, so for each point p in an object: 

C = (T (R (Sp))) 
 It is important to note that matrix multiplication is associative: 

C = TRSp = (TR)(Sp) 
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D3DX10’s Transforms 

You will notice that the matrix is multiplied with the point to be 

transformed, and not the point multiplied by the 

transformation matrix (which would be the intuitive approach) 

Transform of point p by matrix T = Tp 

Since this is not intuitive, the D3DX math library defines the 

transformation matrices as transposes due to the property 

that: Tp = pTTT 
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The Normal Transform 

A single affine transformation matrix can be used to 

transform lines, points, polygons and other geometry but 

cannot always be used to transform the surface normal. 

Translations and rotations do not affect the normal but 

scaling & shearing does! 

Uniform scaling simple affects the normal’s length so the 

surface normal needs to be normalized (made into a unit 

vector again) 

Non-uniform scaling changes the direction of the normal and 

so it needs to be recalculated. 
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Practical Examples of Affine 

Transformations 

Rotation around a point, rotation around an arbitrary axis, 

Transform concatenation examples. 
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Rotation about a Fixed Point 

 The achieve rotation around a specific point, first translate the object so 

that point is now at the origin, then perform the required rotation and 

translate the object back to its original position. 
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The complete transform X is : X = T(p)Ry(θ)T(-p) 

 



Rotation about an Arbitrary Axis 

 Make Sure that r is a unit vector 

 Find two more unit length axes (s,t) to 
form an orthonormal system 

 To find s, set the smallest value to zero 
and swap the remaining elements and 
negate the first one, then normalize s. 

 To find t: r cross product s 

 Create matrix M, this matrix transforms 
vector r to the x axis, s to the y axis 
and t to the z axis. 

 Rotate around x (technically r) and 
then reverse coordinate system 
transform 
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Transform Examples 

We have an object centered around the point (1,0,0) in object 

space. This object is positioned at (4,3,-1) in world space. 

  

After we position the object, we want to rotate the object 45 

degrees to the left around the Y axis. What does the final 

transform look like? 
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FT = T(5,3,-1)  Ry(-π/2)  T(-5,-3,1) 



Space Example 

 We have a planet P at position p orbiting 

(rotating around its own center as well) a sun 

S centered at the origin (s) at a distance of  10 

units. The speed of rotation is 0.1 Radians per 

frame. 

 

 Planet P has a moon M at position m orbiting 

planet P at a distance of 2 units. The moon 

orbits the planet at a speed of 0.01 Radians 

per frame. 

 

 What are the transforms necessary to perform 

the necessary adjustments at each frame? 
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