1. Introduction

Introduction to Computer Graphics

Display and Input Technologies

Display and Input devices

Physical Display Technologies

Pixels up Close

- The first modern computer display devices we had were cathode ray tube (CRT) monitors which used the same technology as TV screens.
- The monitor was made up of thousands of picture elements (pixels), each pixel was made up of three colored blocks: red/green/blue (RGB)
- The RGB color model is an additive one, which means that the three primary colors RGB are added together to reproduce other colors.
- There is another color model which is subtractive, called the CYMK (cyan/yellow/magenta/key), this is mainly used in print media.
- There is a third common color model, HSV (Hue/Saturation/Value), which can be seen as a more accurate form of RGB and is commonly used in digital art applications (e.g. Photoshop) for color selection.

Physical Display Technologies

- It is through a combination of the RGB colors that each pixel gets its own color, and all these colored pixels put together generate the image you see on a monitor.
- A monitor's resolution specifies the dimensions of the viewable area of a monitor in pixels. The most common desktop resolution today is 1280x1024 which means there are 1280 pixels across and 1024 pixels down.
- For animation, the monitor needs to update the displayed image. To do this the display needs to be redrawn, the number of times the display is redrawn a second is called the refresh rate. Most CRT monitors have a refresh rate of 60 ~ 75 hz (hertz means cycles per second)
- LCD monitors operate in a different manner to CRTs, and so don't have refresh rates but rather a response time, which defines how long it takes for a pixel to change color. Most LCDs today have responses times ranging from 2ms to 16ms

Input Devices

CAD, SFX, Games, Simulations

Uses of Computer Graphics

3D Animation and SFX

 Used heavily in the movie industry by companies such as Pixar, DreamWorks.

Special Effects in movies (e.g. 300, Sin City, etc.)

Computer Aided Design (CAD)

The biggest computer graphics industry
Used in almost all industrial design fields such as: Architecture, Engineering, etc...

Medical Visualization

3D MRI

Dental and bone scans

Simulations

Training aids for machinery operators, soldiers, pilots, etc...

Video Games

- Multi Billion Dollar Industry
- Pushing the limits of current graphical technology
- The Driving Force behind GPU development!

A History of Computer Graphics in Video Games
Computer Graphics Advancements

ID Software's Doom – 2D Software Rendering - 1993

Gamer's Hell

ID Software's Quake – 3D Software Rendering – June 1996

3DFX Voodoo 1

Interface: PCI Shader Model: N/A DirectX: 3 Manufacturing Process: 0.5 micron Core Clockspeed: 50MHz Memory Amount: 8MB Memory Clockspeed: 50MHz Memory Bus: 64-bit Transistors: 1 million

ID Software's Quake 2 – 3D Hardware Rendering – December 1997

NVIDIA Riva TNT2

Interface: AGP Shader Model: N/A DirectX: 6 Manufacturing Process: 0.25 micron Core Clockspeed: 125MHz Memory Amount: 32MB Memory Clockspeed: 150MHz Memory Bus: 128-bit Transistors: 15 million

NVIDIA Geforce 256 DDR

Interface: AGP Shader Model: N/A DirectX: 7 Manufacturing Process: 0.22 micron Core Clockspeed: 120MHz Memory Amount: 64MB Memory Clockspeed: 150MHz Memory Bus: 128-bit Transistors: 23 million

ID Software's Quake 3 Arena – 3D Hardware Rendering – December 1999

ATI Radeon 9700pro

Interface: AGP Shader Model: 2.0 DirectX: 9 Manufacturing Process: 0.15 micron Core Clockspeed: 275MHz Memory Amount: 128MB Memory Clockspeed: 270MHz Memory Bus: 128-bit Transistors: 107 million

Infinity Ward's Call of Duty (Quake 3 engine) – 3D Hardware Rendering - 2003

NVIDIA Geforce 6800GT

Interface: AGP Shader Model: 3.0 DirectX: 9 Manufacturing Process: 0.13 micron Core Clockspeed: 350MHz Memory Amount: 256MB Memory Clockspeed: 1000MHz Memory Bus: 256-bit Transistors: 222 million

Infinity Ward's Call of Duty 2 (Modified Quake 3 engine) – 3D Hardware Rendering - 2005

NVIDIA Geforce 8800GTX

Interface: PCIe Shader Model: 4.0 DirectX: 10 Manufacturing Process: 90 nanometer Core Clockspeed: 575MHz Memory Amount: 796MB Memory Clockspeed: 1800MHz Memory Bus: 384-bit Transistors: 484 million

Infinity Ward's Call of Duty 4 – 3D Hardware Rendering - 2007

GPU Hardware Now

NVIDIA Geforce GTX580

Interface: PCle 2.0 x16 Shader Model: 5.0 DirectX: 11 Manufacturing Process: 40 nanometer Core Clockspeed: 770MHz Memory Amount: 1536MB Memory Clockspeed: 2004MHz Memory Bus: 384-bit Transistors: 3 billion

3D Graphics in Games: The Future

CRYTEK's Cryengine3 – 3D Hardware Rendering – 2010/2011

The Current State of Computer Graphics Technology

Computer Graphics Today

28

Computer Graphics Today

The CPU vs. GPU battle

Fusion – CPUs with GPUs embedded

- Intel Sandy Bridge (DX10 GPU on chip)
- Hardware rendering in mobile devices
 - NVIDIA Tegra (New Android Platform)

- Imagination Technologies PowerVR (iPhone, certain android handsets)
- Windows Phone 7 XNA compliant DX9 GPU

OpenCL/CUDA frameworks

- Allowing GPUs to be used for generic processing
- Allows for more realistic graphics due to higher quality physics